Copied to
clipboard

G = C42.280C23order 128 = 27

141st non-split extension by C42 of C23 acting via C23/C2=C22

p-group, metabelian, nilpotent (class 3), monomial

Aliases: C42.280C23, C4:C4oD8, C4:C4oQ16, C4oD8:6C4, (C4xD8):39C2, D8:16(C2xC4), C4:C4.403D4, (C4xQ16):39C2, Q16:15(C2xC4), SD16:8(C2xC4), C2.5(D4oD8), C4.153(C4xD4), C2.5(Q8oD8), C4.28(C23xC4), C8.23(C22xC4), C22.21(C4xD4), SD16:C4:4C2, C4:C4.368C23, C8o2M4(2):8C2, (C2xC4).208C24, (C2xC8).419C23, (C4xC8).222C22, C22:C4.190D4, D4.10(C22xC4), (C4xD4).59C22, C23.440(C2xD4), Q8.10(C22xC4), (C4xQ8).55C22, (C2xD8).173C22, (C2xD4).376C23, (C2xQ8).349C23, C2.D8.214C22, C8:C4.115C22, C23.36D4:38C2, (C22xC4).929C23, (C22xC8).251C22, (C2xQ16).169C22, C22.152(C22xD4), D4:C4.198C22, C23.33C23:5C2, Q8:C4.199C22, (C2xSD16).112C22, C42:C2.299C22, (C2xM4(2)).355C22, C2.68(C2xC4xD4), (C2xC8):16(C2xC4), C4oD4:5(C2xC4), (C2xC2.D8):39C2, C4.16(C2xC4oD4), (C2xC4oD8).15C2, (C2xC4).915(C2xD4), (C2xC4).267(C4oD4), (C2xC4:C4).576C22, (C2xC4).267(C22xC4), (C2xC4oD4).89C22, SmallGroup(128,1683)

Series: Derived Chief Lower central Upper central Jennings

C1C4 — C42.280C23
C1C2C22C2xC4C22xC4C42:C2C23.33C23 — C42.280C23
C1C2C4 — C42.280C23
C1C22C42:C2 — C42.280C23
C1C2C2C2xC4 — C42.280C23

Generators and relations for C42.280C23
 G = < a,b,c,d,e | a4=b4=d2=1, c2=a2, e2=b2, ab=ba, ac=ca, ad=da, eae-1=ab2, cbc-1=dbd=b-1, be=eb, dcd=bc, ece-1=b2c, de=ed >

Subgroups: 404 in 242 conjugacy classes, 140 normal (24 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C22, C8, C8, C2xC4, C2xC4, C2xC4, D4, D4, Q8, Q8, C23, C23, C42, C42, C22:C4, C22:C4, C4:C4, C4:C4, C4:C4, C2xC8, C2xC8, M4(2), D8, SD16, Q16, C22xC4, C22xC4, C2xD4, C2xD4, C2xQ8, C4oD4, C4oD4, C4xC8, C8:C4, D4:C4, Q8:C4, C2.D8, C2xC4:C4, C2xC4:C4, C42:C2, C42:C2, C4xD4, C4xD4, C4xQ8, C22xC8, C2xM4(2), C2xD8, C2xSD16, C2xQ16, C4oD8, C2xC4oD4, C8o2M4(2), C23.36D4, C2xC2.D8, C4xD8, C4xQ16, SD16:C4, C23.33C23, C2xC4oD8, C42.280C23
Quotients: C1, C2, C4, C22, C2xC4, D4, C23, C22xC4, C2xD4, C4oD4, C24, C4xD4, C23xC4, C22xD4, C2xC4oD4, C2xC4xD4, D4oD8, Q8oD8, C42.280C23

Smallest permutation representation of C42.280C23
On 64 points
Generators in S64
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 15 27 23)(2 16 28 24)(3 13 25 21)(4 14 26 22)(5 11 35 31)(6 12 36 32)(7 9 33 29)(8 10 34 30)(17 42 49 62)(18 43 50 63)(19 44 51 64)(20 41 52 61)(37 53 57 45)(38 54 58 46)(39 55 59 47)(40 56 60 48)
(1 37 3 39)(2 38 4 40)(5 52 7 50)(6 49 8 51)(9 43 11 41)(10 44 12 42)(13 47 15 45)(14 48 16 46)(17 34 19 36)(18 35 20 33)(21 55 23 53)(22 56 24 54)(25 59 27 57)(26 60 28 58)(29 63 31 61)(30 64 32 62)
(1 3)(2 4)(5 33)(6 34)(7 35)(8 36)(9 11)(10 12)(13 23)(14 24)(15 21)(16 22)(17 44)(18 41)(19 42)(20 43)(25 27)(26 28)(29 31)(30 32)(37 47)(38 48)(39 45)(40 46)(49 64)(50 61)(51 62)(52 63)(53 59)(54 60)(55 57)(56 58)
(1 31 27 11)(2 12 28 32)(3 29 25 9)(4 10 26 30)(5 23 35 15)(6 16 36 24)(7 21 33 13)(8 14 34 22)(17 46 49 54)(18 55 50 47)(19 48 51 56)(20 53 52 45)(37 41 57 61)(38 62 58 42)(39 43 59 63)(40 64 60 44)

G:=sub<Sym(64)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,15,27,23)(2,16,28,24)(3,13,25,21)(4,14,26,22)(5,11,35,31)(6,12,36,32)(7,9,33,29)(8,10,34,30)(17,42,49,62)(18,43,50,63)(19,44,51,64)(20,41,52,61)(37,53,57,45)(38,54,58,46)(39,55,59,47)(40,56,60,48), (1,37,3,39)(2,38,4,40)(5,52,7,50)(6,49,8,51)(9,43,11,41)(10,44,12,42)(13,47,15,45)(14,48,16,46)(17,34,19,36)(18,35,20,33)(21,55,23,53)(22,56,24,54)(25,59,27,57)(26,60,28,58)(29,63,31,61)(30,64,32,62), (1,3)(2,4)(5,33)(6,34)(7,35)(8,36)(9,11)(10,12)(13,23)(14,24)(15,21)(16,22)(17,44)(18,41)(19,42)(20,43)(25,27)(26,28)(29,31)(30,32)(37,47)(38,48)(39,45)(40,46)(49,64)(50,61)(51,62)(52,63)(53,59)(54,60)(55,57)(56,58), (1,31,27,11)(2,12,28,32)(3,29,25,9)(4,10,26,30)(5,23,35,15)(6,16,36,24)(7,21,33,13)(8,14,34,22)(17,46,49,54)(18,55,50,47)(19,48,51,56)(20,53,52,45)(37,41,57,61)(38,62,58,42)(39,43,59,63)(40,64,60,44)>;

G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,15,27,23)(2,16,28,24)(3,13,25,21)(4,14,26,22)(5,11,35,31)(6,12,36,32)(7,9,33,29)(8,10,34,30)(17,42,49,62)(18,43,50,63)(19,44,51,64)(20,41,52,61)(37,53,57,45)(38,54,58,46)(39,55,59,47)(40,56,60,48), (1,37,3,39)(2,38,4,40)(5,52,7,50)(6,49,8,51)(9,43,11,41)(10,44,12,42)(13,47,15,45)(14,48,16,46)(17,34,19,36)(18,35,20,33)(21,55,23,53)(22,56,24,54)(25,59,27,57)(26,60,28,58)(29,63,31,61)(30,64,32,62), (1,3)(2,4)(5,33)(6,34)(7,35)(8,36)(9,11)(10,12)(13,23)(14,24)(15,21)(16,22)(17,44)(18,41)(19,42)(20,43)(25,27)(26,28)(29,31)(30,32)(37,47)(38,48)(39,45)(40,46)(49,64)(50,61)(51,62)(52,63)(53,59)(54,60)(55,57)(56,58), (1,31,27,11)(2,12,28,32)(3,29,25,9)(4,10,26,30)(5,23,35,15)(6,16,36,24)(7,21,33,13)(8,14,34,22)(17,46,49,54)(18,55,50,47)(19,48,51,56)(20,53,52,45)(37,41,57,61)(38,62,58,42)(39,43,59,63)(40,64,60,44) );

G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,15,27,23),(2,16,28,24),(3,13,25,21),(4,14,26,22),(5,11,35,31),(6,12,36,32),(7,9,33,29),(8,10,34,30),(17,42,49,62),(18,43,50,63),(19,44,51,64),(20,41,52,61),(37,53,57,45),(38,54,58,46),(39,55,59,47),(40,56,60,48)], [(1,37,3,39),(2,38,4,40),(5,52,7,50),(6,49,8,51),(9,43,11,41),(10,44,12,42),(13,47,15,45),(14,48,16,46),(17,34,19,36),(18,35,20,33),(21,55,23,53),(22,56,24,54),(25,59,27,57),(26,60,28,58),(29,63,31,61),(30,64,32,62)], [(1,3),(2,4),(5,33),(6,34),(7,35),(8,36),(9,11),(10,12),(13,23),(14,24),(15,21),(16,22),(17,44),(18,41),(19,42),(20,43),(25,27),(26,28),(29,31),(30,32),(37,47),(38,48),(39,45),(40,46),(49,64),(50,61),(51,62),(52,63),(53,59),(54,60),(55,57),(56,58)], [(1,31,27,11),(2,12,28,32),(3,29,25,9),(4,10,26,30),(5,23,35,15),(6,16,36,24),(7,21,33,13),(8,14,34,22),(17,46,49,54),(18,55,50,47),(19,48,51,56),(20,53,52,45),(37,41,57,61),(38,62,58,42),(39,43,59,63),(40,64,60,44)]])

44 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I4A···4L4M···4X8A8B8C8D8E···8J
order12222222224···44···488888···8
size11112244442···24···422224···4

44 irreducible representations

dim111111111122244
type++++++++++++-
imageC1C2C2C2C2C2C2C2C2C4D4D4C4oD4D4oD8Q8oD8
kernelC42.280C23C8o2M4(2)C23.36D4C2xC2.D8C4xD8C4xQ16SD16:C4C23.33C23C2xC4oD8C4oD8C22:C4C4:C4C2xC4C2C2
# reps1121224211622422

Matrix representation of C42.280C23 in GL6(F17)

400000
040000
00160150
00016015
000010
000001
,
1600000
0160000
000100
0016000
000001
0000160
,
4150000
0130000
00314611
0014141111
0000143
000033
,
1600000
1310000
001000
0001600
000010
0000016
,
100000
010000
004000
000400
00130130
00013013

G:=sub<GL(6,GF(17))| [4,0,0,0,0,0,0,4,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,15,0,1,0,0,0,0,15,0,1],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,0,16,0,0,0,0,1,0,0,0,0,0,0,0,0,16,0,0,0,0,1,0],[4,0,0,0,0,0,15,13,0,0,0,0,0,0,3,14,0,0,0,0,14,14,0,0,0,0,6,11,14,3,0,0,11,11,3,3],[16,13,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,16],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,13,0,0,0,0,4,0,13,0,0,0,0,13,0,0,0,0,0,0,13] >;

C42.280C23 in GAP, Magma, Sage, TeX

C_4^2._{280}C_2^3
% in TeX

G:=Group("C4^2.280C2^3");
// GroupNames label

G:=SmallGroup(128,1683);
// by ID

G=gap.SmallGroup(128,1683);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,-2,224,253,184,2019,521,248,2804,1411,172]);
// Polycyclic

G:=Group<a,b,c,d,e|a^4=b^4=d^2=1,c^2=a^2,e^2=b^2,a*b=b*a,a*c=c*a,a*d=d*a,e*a*e^-1=a*b^2,c*b*c^-1=d*b*d=b^-1,b*e=e*b,d*c*d=b*c,e*c*e^-1=b^2*c,d*e=e*d>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<